skip to main content


Search for: All records

Creators/Authors contains: "Walton, Neil S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kim, Moon S. ; Cho, Byoung-Kwan ; Chin, Bryan A. (Ed.)
  2. Optical sensing has the potential to be an important tool in the automated monitoring of food quality. Specifically, hyperspectral imaging has enjoyed success in a variety of tasks ranging from plant species classification to ripeness evaluation in produce. Although effective, hyperspectral imaging is prohibitively expensive to deploy at scale in a retail setting. With this in mind, we develop a method to assist in designing a low-cost multispectral imager for produce monitoring by using a genetic algorithm (GA) that simultaneously selects a subset of informative wavelengths and identifies effective filter bandwidths for such an imager. Instead of selecting the single fittest member of the final population as our solution, we fit a univariate Gaussian mixture model to the histogram of the overall GA population, selecting the wavelengths associated with the peaks of the distributions as our solution. By evaluating the entire population, rather than a single solution, we are also able to specify filter bandwidths by calculating the standard deviations of the Gaussian distributions and computing the full-width at half-maximum values. In our experiments, we find that this novel histogram-based method for feature selection is effective when compared to both the standard GA and partial least squares discriminant analysis. 
    more » « less